Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

A GIS-based approach for geomorphological analysis of volcanic edifices to estimate latent magma plumbing system (Contract research)

Nishiyama, Nariaki; Goto, Akira*; Tsukahara, Yuzuko; Kawamura, Makoto; Umeda, Koji*; Niwa, Masakazu

JAEA-Testing 2022-003, 51 Pages, 2022/09

JAEA-Testing-2022-003.pdf:5.24MB
JAEA-Testing-2022-003-appendix(CD-ROM).zip:1.12MB

Advancement of the evaluation technology of the magma activity range is essential as one of the technical issues related to volcanic and igneous activities in the evaluation of the long-term stability of the geological environment in the geological disposal of high-level radioactive waste. As an effective method, topographical analysis of volcanic edifices is expected to be used to determine the distribution area of dikes. In recent years, the development of computer-based topographic analysis technology has made it possible to simply perform a large volume of work that would otherwise be difficult due to the manual handling. This report describes an analysis method for the shape of contour lines that forms volcanic edifices using GIS software.

JAEA Reports

None

Matsuda, Yoichi*

PNC TJ7305 95-001, 12 Pages, 1995/03

PNC-TJ7305-95-001.pdf:1.12MB

no abstracts in English

Oral presentation

Examination of modeling of Quaternary volcanic dike distribution and evaluation of central conduit stability by contour shape analysis

Nishiyama, Nariaki*; Kawamura, Makoto; Umeda, Koji*; Goto, Akira; Niwa, Masakazu

no journal, , 

The topography of the volcanic mountain body is thought to reflect the actual distribution range of the dike. Based on this idea, we examined the modeling of the dike distribution and the evaluation of the central conduit stability focused on the shape of the contour lines. In this study, we drew the line with the maximum distance (long axis) in the contour distribution of each elevation and aggregated the orientation data, in addition to the data obtained from the analysis of Nishiyama et al. (2021). Moreover, we calculated the topographic parameter of each volcano, using the area data of the area enclosed by the contour lines (contour polygons). As a result, we found that the orientation of the long axis of the contour polygons of volcanic bodies shows the orientation trend in each volcano. The orientation of the line connecting the centroid of many volcanoes is consistent with that of the line connecting the centroid, which is roughly consistent with the direction of sigma 1 around the volcanoes. In general, dikes are characterized by extension in the direction of the maximum compression axis, and our topographic analysis results are consistent with this. As for the topographic parameters of each volcano using the area of contour polygons, the result suggests that it is possible to distinguish between volcanoes classified as central conduit stable and unstable by Takahashi (1994). Therefore, the topographic analysis is expected to be used to evaluate the stability of central conduit even for volcanoes whose activity history is not yet known. In the future, we will develop an evaluation method based on the above topographic features, and establish a method for evaluating the central conduit stability and modeling the distribution of dikes by topographic analysis.

3 (Records 1-3 displayed on this page)
  • 1